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AFIT/GCE/ENG/03-04 

Abstract 

 The purpose of Link-16 is to exchange real-time tactical data among units of the United 

States and allied forces.  Primary Link-16 functions include exchange of friendly unit position and 

status data, the dissemination of tactical surveillance track data, and the control/management of air, 

surface, and subsurface engagements.  Because Link-16 will play an integral part in the network-

centric Joint Battlespace Infosphere (JBI), the performance of Internet Protocol version six (IPv6) 

and IP Security (IPSec) over Link-16 needs to be determined.  IP packets also afford additional 

security measures within the JBI. 

 Using OPNET modeling software to simulate a Link-16 network, the investigation of this 

research revealed that the overhead from IPv6 and IPSec does not significantly affect end-to-end 

delay and effective throughput of the Link-16 network.  As long as the encryption and 

authentication protocols are preprocessed, these protocols add minimal amounts of latency 

overhead to the Link-16 network.  However, as the offered load is extended beyond the 90 % level, 

the overhead from the IPSec extensions begins to have more of a negative effect on the End-to-End 

delay and throughput.  Therefore, as the offered load increases beyond the 90 % level, it begins to 

have a significant impact on the performance of the Link-16 network.  
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INTERNET PROTOCOL (IP) OVER LINK-16 

 
I.  Introduction 

 One of the key challenges of the 21st century military force is Information Superiority.  This 

challenge is being addressed in one respect through the Joint Battlespace Infosphere (JBI) 

[SAB99].  The JBI uses a network-centric concept, versus platform-centric concept, so that all JBI 

data can be easily transmitted from one platform to another.  The JBI can accommodate both 

legacy and new communications systems.  The integration of new and legacy systems provides 

essential improvements in the distribution of information through various platforms at all levels of 

the command structure from Joint Forces Air Component Command (JFACC) to the pilot in the 

cockpit [Ray01].  Link-16, a tactical data link used among U.S. and NATO forces, has the potential 

to bridge new and legacy systems through the use of the Internet Protocol (IP). 

1.1 Background 

 The proposed JBI includes elements from deployed U.S., allied, and coalition forces that 

require the ability to communicate with one another [SAB99].  There is a relationship between the 

timeliness of information and the tempo of operations across any war-fighting theatre of 

operations.  For instance, at the high end of the performance spectrum are cooperative sensing and 

engagement of high-speed targets that require high data rate and low latency information transport 

capabilities.  At the intermediate level, there are various command and control activities that can 

tolerate information delays on the order of seconds.  These operations are typically supported by 
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data links on various platforms such as fighter and support aircraft, fixed and mobile ground units, 

and naval vessels.  

 The JBI structure can be viewed as an integrated network of communication devices of 

multi-mode transport capabilities to include civilian and military networks, satellite 

communications, multiple types of data links, radios, and other commercial information services 

combined to create a distributed computing environment.  Emerging technologies enable multiple 

stand-alone networks to be integrated into a dynamic network-of-networks communications 

system.  In the current environment, voice, video, and data networks operate independently in 

order to meet required timelines for information exchange.  Each network operates with protocols 

that are separate and distinct from the protocols employed in Transmission Control 

Protocol/Internet Protocol (TCP/IP) based networks, such as the Secret Internet Protocol Router 

Network (SIPRNET), or the Unclassified Internet Protocol Router Network (NIPRNET).  Until 

recently, the reason for separate networks was due to lack of quality of service across IP 

networking technology.  However, technology now exists to solve this problem. 

 Most current platforms use a tactical data link of one form or another.  The Air Force is 

migrating its legacy data link systems to the J-Series family of tactical data links using Link-16 as 

the foundation.  Link-16 will replace the Interim JTIDS Message System, TADIL-A, TADIL-B, 

and TADIL-C systems [USAF01].  The standard way of transporting data across most networks is 

through the use of IP packets.  Therefore, it is essential that Link-16 be able to transport IP packets 

across its network as well.  IP Next Generation (IPv6) is the latest version of the Internet protocol, 

designed to be the successor of IP version 4 (IPv4).  Although one of the major reasons for creating 

IPv6 was to increase the IP address size from 32 bits to 128 bits, and thereby relieve the rapidly 
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shrinking available addresses, another key feature of IPv6 is its authentication and privacy 

capabilities.  Extensions to the IP to support authentication, data integrity, and data confidentiality 

are specified in IPv6 [RFC 2460].  These extensions include the IP Security (IPSec) protocol 

which provides various security services at the IP layer.  The two traffic security protocols 

contained in IPSec are the Authentication Header (AH) protocol and the Encapsulating Security 

Payload (ESP) protocol.  IPSec is designed to provide interoperable, high quality, 

cryptographically-based security for IPv4 and IPv6 [RFC2401]. 

 Although Link-16 has its own security measures (Message Security and Transmission 

Security), if additional security can be added without significantly adding to transmission 

overhead, then it is advantageous to provide security at an additional layer such as the IP layer.  

This research focuses on the latency effects from transmitting IP and IPSec over a Link-16 data 

link.   

1.2 Goals 

The overall goal of this research is to evaluate the performance of a scheme that incorporates 

IP and  IPSec into a Link-16 datalink network.  In assessing this goal, this research will first 

consider, as a baseline, the effect of IP overhead when “packaging” IP messages into JTIDS 

packets.  Once the baseline is established, then the effects from the IPSec overhead will be 

considered.  The IPSec protocols to be evaluated include the AH and ESP protocols.  Their effect 

on network latency will be analyzed to determine if their additional overhead will adversely affect 

the Link-16 data link network.  In order to attain the above stated goal, the following objectives 

will need to be met: 
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• Develop or obtain a Link-16 network simulation model 

• Verify the simulation model 

• Determine what impact IP messages passed over a Link-16 network have on overall 

latency 

1.3 Document Overview 

 This chapter provides an introduction and some background to the network-centric concept 

of battlefield communications and focuses in on the data-link aspect, particularly, the Link-16 

network aspect.   It concludes with the goals of this research.  Chapter II provides background 

information in the areas of  the JBI, Information Assurance, IP, IPSec, and various 

communications platforms.  Chapter III contains the methodology this research used to approach 

the problem.  Chapter IV describes the verification and simulation process of the OPNET Link-

16 model, as well as the accumulation of data and analysis of the results acquired from the 

OPNET Link-16 model.  Chapter V describes research conclusions and areas that should be 

considered for future study.
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II.  Literature Review 

2.1  Introduction 

 This chapter examines the increasing need for Information Assurance (IA) within older 

generation aircraft communications systems and the unique challenges these systems face when 

communicating with newer communications systems.  Currently fielded IA methods for embedded 

information systems were designed on systems that were limited due to their proprietary interfaces 

to other systems.  In contrast, network-centric warfare depends on a reliable flow of information 

among systems, which are designed around open architectures and commonly used standards and 

products.  Additionally, older generation aircraft were not built to support the high data throughput 

rate common in many applications used today, nor can they support the graphical interfaces 

commonly used in many applications.  Consider, for example the F-15E, a 70’s era aircraft, which 

still plays a vital role in the U.S. Air Force.  It is designed to support data transfer rates in the 

kilobit per second range not the megabit or even gigabit per second range that modern systems 

currently use.  Modern systems are capable of high data transfer rates.  These systems, such as the 

F-22 Raptor Stealth Fighter, also have IA integrated into them by design [Loc03].  It is a challenge 

to integrate IA into older generation aircraft such as the F-15E, not only because of limited 

bandwidth problems, but also because of the inherent difficulty in integrating new technology into 

older systems. 

2.2 Scenario 

Figure 2.1 shows a scenario in the proposed Joint Battlespace Infosphere (JBI) [SAB99].  

The JBI is made up of a complex, heterogeneous system of systems with globally distributed fixed 
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and deployed assets consisting of various servers, databases, gateways, and proxies.  

Communications networks include WANs, LANs, terrestrial and space-based assets and also 

include such resources such as SIPRNET and NIPRNET.  Figure 2.1 is split into two parts:  fixed 

assets represent Continental United States (CONUS) resources and deployed assets represent 

outside (OCONUS) resources.  In this scenario, an F-15E flight operating within the Joint 

Battlespace Infosphere (JBI) is enroute to its pre-planned target [Ray01]1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  A Notional Deployed Joint Battlespace Infosphere 
 

                                                 
1 Since the JBI is still a concept and not complete in design, assumptions have been made regarding ground-based JBI components. 
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 Simultaneously, in the same theatre of operations, an Unmanned Air Vehicle (UAV) detects 

a Surface-to-Air Missile (SAM) and transmits this data to the JBI mission servers via Satellite 

Communication (SATCOM).  Since SAMs are a high priority target, Air Command decides to re-

route the F-15E flight to take out the SAM.  Using JBI, Air Command directs the AWACS and    

F-15E to change the mission to intercept the SAM target.  The F-15E on-board JBI client receives 

an Air Tasking Order (ATO) change alert.  The AWACS operator and lead Weapons System 

Officer (WSO) review the ATO alert for additional info.  The F-15E acknowledges the new ATO 

and diverts to the new target. 

In this notional scenario there are many simultaneous communications occurring between 

fighter aircraft, AWACS, UAVs, satellites, JBI servers, and the Air Operations Centers (AOC), 

using various data formats, each encompassing their own security measures.  It is problematic to 

insert data security into data communications due to the additional overhead that comes along with 

the added security.  This is especially true for older generation aircraft with limited 

communications bandwidth.  Yet, IA measures are needed to protect communication systems, data 

integrity, data confidentiality, data availability, and provide proper authentication and authorization 

measures. 

Figure 2.2 shows an established F-15E—JBI communications link.  Prior to the F-15E 

departure, the Link-16 network is configured to allow communication among the F-15Es, the 

AWACS controller aircraft and the ground-based AOC JBI Server Gateway.  Once the 

connectivity between the on-board JBI client and ground-based JBI server is established, 

communication data is transferred via flight “Cups”, or objects whose implementation consists of a  
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CORBA object that provides services such as write and read to other objects.  A CORBA object is 

defined as an identifiable, encapsulated entity that provides one or more services that can be 

requested by a client [TaV02].  Access to the Cup’s services is typically restricted to objects that 

possess proper authorization rights. 

 Figure 2.3 shows the JBI Server Gateway that includes the JBI Server application and it’s 

related databases and associated collaboration applications.  The above mentioned “Cup” or 

mission fuselet resides on the JBI Server.  In this scenario, CORBA serves as the distributed object  

JBI Server Gateway 
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Link-16 Nets 
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Figure 2.2:  Linking the F-15E Aircraft into the JBI 

F-15E 



 

 2-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

middleware to facilitate communication between the different OSI layers in accordance with the 

security policy.  An adaptation layer supports communication between the Internet Protocol (IP) 

and the Link-16 protocol.  The F-15E on-board Advanced Display Core Processor (ADCP) serves 

as host to the JBI applications and required databases.  Link-16 and SATCOM components 

communicate through the Communication, Navigation, and Identification (CNI) suite of the F-15E 

on-board communications system to provide wireless JBI connectivity.  The CNI is connected to 

the ADCP via the MIL-SPEC 1553 Avionics Bus. 

 

Figure 2.3:  AOC Notional Hardware Architecture and JBI 
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2.4 Information Assurance (IA) Capabilities. 

 IA functionality can be implemented in various components of the JBI—F-15E architecture.  

Countermeasures are layered to provide “defense in depth”, where each layer provides it’s own 

layer of security.  Combined system security, then, is reinforced by each layer.  For instance, 

security could be deployed in the ground-based host systems, in the JBI network nodes, or on-

board the F-15E Strike Eagle.  In focusing on the F-15E on-board notional architecture, there are 

several areas where IA functionality can be implemented, such as: 

• Real-Time Operating System:  Trusted Security Kernel, Access Control 

• Data Link Layer:  Link-16/JTIDS Security and SATCOM Security 

• IP Layer:  IPSec/IPv6.0 

• Middleware Layer:  CORBASec 

• Application/Transport Layer:  SSL and/or Database Security 

 This research focuses on security implemented at the IP layer.  It is assumed that IPv6 will be 

used.  IP Security (IPSec) is integrated into IPv6 and supports data origin, data integrity, data 

confidentiality, replay protection and automated management of cryptographic keys [Kae99]. 

2.4.1 Security Threats and Countermeasures.  When considering implementation of IA into 

a communications system it is important to define threats and mechanisms available to counter 

those threats.  There are four types of security threats to consider along with their typical 

countermeasures [TaV02]: 
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• Interception:  This occurs when an unauthorized party gains access to data, such as 

when a third party eavesdrops on a conversation by two other parties or when data is 

illegally copied.  A principle countermeasure to interception is data encryption. 

• Interruption:  Interruption occurs when data or services become unavailable, such as 

when data is corrupted or lost.  A typical example is a Denial of Service (DOS) attack 

when a server can no longer be accessed because of overload.  DOS is difficult to 

defend against, but authorization countermeasures put in place through a firewall are 

a typical method of protection 

• Modification:  Modification is the unauthorized changing of data or tampering with a 

service so it no longer conforms to the original specification.  An example is 

tampering with database files or modifying the behavior of a program.  Principle 

counter measures include authentication, authorization, and/or auditing.  

Authentication and authorization are put in place to prevent modification in the first 

place whereas auditing is used to identify a perpetrator after-the-fact. 

• Fabrication:  Adding information to gain unauthorized access, such as replay attacks 

or adding an entry into a password file are examples of fabrication.  Similar to 

protecting against the modification threat, authentication, authorization and auditing 

provide a defense in this situation. 

 
 Some typical threats that might be encountered in the notional architecture include: 

 
• Spoofing (modification):  For example, communications from SATCOM to F-15Es can 

be modified, such that an attacker attempts to introduce data packets that appear to 

come from a trusted source.  Countermeasures:  TRANSEC and COMSEC of Airborne 
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Links and/or additional data encryption and packet source authentication mechanisms 

at higher communication layers. 

• Introduction of malicious software into an F-15E from the JBI can occur when an 

adversary uses a JBI host to launch an attack against an F-15E.  A typical situation is 

where a hacker finds a backdoor into the JBI network (through Battlefield networks, 

Defense Information System Networks, or the Internet) and creates a JBI object with 

embedded malicious code payload.  The corrupted JBI object is uploaded to the F-15E 

aircraft via the Data Transfer Module (DTM), Link-16, or through SATCOM.  The 

malicious code can then execute its payload on-board the F-15E.  Countermeasures:  

Intrusion detection on-board the aircraft can mitigate the threat. 

• Eavesdropping and/or Surveillance:  This involves the unauthorized interception of 

information.  Successful attacks against airborne links requires the ability to thwart 

TSEC and MSEC countermeasures at the data link level or the ability to monitor the 

unencrypted messages at the source or destination nodes.  Countermeasures:  Data 

encryption through TSEC and MSEC. 

A comprehensive IA approach can be implemented by using a layered approach to security.  

These layers need to:  (1) protect the system from attacks through access control, firewalls, and 

cryptography; (2) detect successful attacks (intrusions) through intrusion detection; (3) react to 

attacks by terminating the attack, confining and deleting malicious software, restoring the system 

to full integrity, notifying the pilot, WSO, and audit log. 
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2.5 Multi-Platform Common Data Link (MP-CDL) 

MP-CDL provides a network-centric data link between airborne and surface Intelligence, 

Surveillance, and Reconnaissance (ISR) assets.    The MP-CDL program (contract awarded in 

November 2002) is planned to meet the needs for a number of airborne and surface platforms to 

simultaneously distribute sensor data products to multiple supporting airborne and ground 

stations.  MP-CDL is designed to meet the needs of various network clients (airborne and 

surface) to interact with a centrally located airborne terminal as well as other clients. 

All terminals will support gateway connectivity to other links external to the MP-CDL 

network.  These links may be either in-theater line-of-site (LOS) or beyond LOS such as 

SATCOM links.  The initial application of MP-CDL will be in support of Army surface units 

command and control access to surveillance products from the Multi-Platform Radar Technology 

Insertion Program (MP-RTIP) platform.  In addition to network operations, the MP-CDL 

terminals support the capability for point-to-point interoperability with CDL surface and/or 

airborne terminals. 

The requirement for a central airborne terminal is to provide a single point-to-point data 

link operating simultaneously with an independent multi-user network.  The terminal’s point-to-

point data link must be interoperable with exiting CDL surface communication equipment and 

Airborne Information Transmission (ABIT) relay terminals at established standard data rates up 

to 274 Megabits per second. 

The multi-user network will connect up to 32 users on a COTS based network architecture.  

Range will be dependent on size, weight, and power requirements and mission geometries to be 

determined later, but is estimated to be approximately equal to the maximum LOS from an 
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altitude of 40,000 feet, or approximately 275-350 feet, depending on the height of the receiving 

antenna near the earth’s surface.  The MP-CDL system will operate in the Ku band and will 

support future capability to operate in one or more alternative RF bands (i.e., X, Ku, Ka) to allow 

multiple simultaneous links [PIX02]. 

 The MP-CDL vision grew out of the MP-RTIP, which was originally a Joint STARS radar 

upgrade.  MP-RTIP was restructured in 2000 to develop a common modular scaleable radar in 

three sizes: 

• Large:  Wide Area Surveillance (WAS) 

• Medium:  NATO 

• Small:  Global Hawk 

2.5.1 MP-CDL Main Goals.  The goals of MP-CDL are to provide: 

• Transparent communication between deployed platforms [Cha02] 

o IP based, per Global Grid Standards 

o Low-latency, wideband path 

o Common carrier for all types of traffic in IP packets 

o Same HW/SW for air, ground, and sea 

• A “LAN hub in the sky” 

• Tradeoff Data rate vs. Antijam 
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• Common and COTS/GOTS Hardware 

2.5.2 MP-CDL Data Rates.  Throughput rates vary depending on the current 

configuration of one-to-one communication devices such as AWACS to UAV, AWACS to 

Common Ground Stations (CGS), UAV to CGSs.  However, within the multi-user network, data 

transmission rate capabilities are based on these minimum required rates. 

The multi-user network data transmission rate from the central airborne terminal (host) to 

the CGSs (clients) is: 

• 45 Megabits per second unjammed to CGS 

• 2.2 Megabits per second in jam resistant mode 

• Similar rates from ISR hub for air-air net 

The multi-user network data transmission rate capability from the CGSs (clients) to the 

central airborne terminal (host) is: 

• CGSs:  low send data, limited power and antenna size.  Will dynamically share a 

low-rate up-link. 

• A ground station with more bandwidth and a bigger dish could reach aircraft with 

40-60 Megabits per second. 

• ISR platforms should reach 20-40-60 Megabits per second air-air depending on 

geography and dish size. 
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2.5.3 Standardization Issues.  The DoD tactical message standard is TADIL-J (Link-16).  

Non-tactical standard is IP.  MP-CDL terminals will transmit and receive IP packets, and will not 

be involved in the content, format, or protocol of the data (unless the packet is addressed to that 

particular terminal).  MP-CDL message sizes vary in length from 100 bits to 100 Mbits, and 

message types and sensor data from the Air Force, Army and Navy, such as TADIL-J, Moving 

Target Indicator (MTI), Synthetic Aperture Radar (SAR), Signals Intelligence (SIGINT), Air 

Tasking Order (ATO), and Global Grid (GG). 

2.6  IPSec/IPv6 

IPSec, short for IP Security, is a set of protocols developed by the Internet Engineering 

Task Force (IETF) to support secure exchange of packets at the IP layer [Kae99].  IPSec has 

been deployed widely to implement Virtual Private Networks (VPN).   IPSec is supported in IP 

version 4 (IPv4) and is mandatory for the next generation of IP, version 6 (IPv6).  IPSec supports 

two encryption modes:  Transport and Tunnel. Transport mode encrypts only the data portion 

(payload) of each packet, but leaves the header untouched. The more secure Tunnel mode 

encrypts both the header and the payload. 

A compliant IPSec implementation must support the required set of Security Association 

(SA) bundle types as outline in Section 4.5 of the Internet Engineering Task Force (IETF) 

Request For Comments (RFC) 2401 [RFC 2401].  The bundle types include four different 

combinations of the Authentication Header (AH) and Encapsulating Security Payload (ESP) 

protocols.  On the receiving side, a compliant device decrypts each packet.  The compliant 

protocol is designed to support these security areas: 
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• Data Origin Authentication 

• Data Integrity 

• Data Confidentiality 

• Replay Protection 

The Security Association (SA) concept is fundamental to IPSec.  An SA is a relationship 

between two or more entities that describes how the entities will use security services to 

communicate effectively.  The SA includes:  an encryption algorithm; an authentication 

algorithm; and a shared session key. 

For a compliant IPSec implementation to work, sending and receiving devices must share a 

public key.  This is accomplished through a protocol known as Internet Security Association and 

Key Management Protocol/Oakley (ISAKMP/Oakley), which allows the receiver to obtain a 

public key and authenticate the sender using digital certificates [Kae99].   

IPSec uses the AH protocol and ESP protocols to provide proof of data origin on received 

packets, data integrity, anti-replay protection, data confidentiality and limited traffic flow 

confidentiality.  These two protocols can be combined and used to protect an entire IP datagram 

or just the upper-layer protocols of the IP payload. 

 Besides support for mobility, security is a key requirement for the successor to today's 

Internet Protocol version.   Except for application-level protocols like SSL or SSH, all IP traffic 

between two nodes can be transmitted without changing any applications. All applications on a 
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machine that benefit from encryption and authentication policies can be set on a per-host (or even 

per-network) basis, not per application/service. 

2.6.1  Authentication Header Protocol.  Use of the AH protocol will increase the IP 

protocol processing costs and will also increase the communications latency.  The increased 

latency is due to the additional authentication data contained in the AH.  The fields of the AH as 

shown in Figure 2-4 are explained as follows: 

• Next Header – 8 bit field which identifies the type of the next payload after the AH 

• Payload Length – 8 bit field which specifies the length of the AH in 32 bit words 

• Reserved – 16 bit field which must be set to zero 

• Security Parameters Index (SPI) – A 32 bit value that in combination with the 

destination address identifies the SA for the datagram 

• Sequence Number Field – Unsigned 32 bit field contains a monotonically increasing 

counter value for defense against replay attacks 

• Authentication Data – Variable length field that contains the Integrity Check Value 

(ICV) for the payload 

 

Next Header – 8 bits Payload Length – 8 bits Reserved – 16 bits 

Security Parameters Index (SPI) – 32 bits 

Sequence Number Field – 32 bits 

Authentication Data – Variable Size 

Figure 2.4:  Authentication Header (AH) Format 
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2.6.2  Encapsulating Security Payload Protocol.  Use of the ESP protocol will also 

increase processing costs and communication costs in a similar manner as the AH protocol.  The 

ESP header holds encryption, replay, and authentication information for its IP datagram.  If 

authentication is selected as part of the SA, encryption is performed first followed by 

authentication.  The encryption algorithm used is selected by the SA.  ESP is designed to use 

symmetric key encryption algorithms.  The fields of the ESP header as shown in Figure 2-5 are: 

• Security Parameters Index (SPI) – A 32 bit value that in combination with the 

destination address identifies the Security Association for the datagram 

• Sequence Number Field – Unsigned 32 bit field contains a monotonically increasing 

counter value for defense against replay attacks 

• Payload Data – Variable length field containing data described by the Next header 

field.  If the encryption algorithm requires an initialization Vector then that would be 

contained here 

• Padding (0-255 bytes) – May be required to satisfy requirements for encryption 

algorithms 

• Pad Length – Indicates the number of bytes used in the Padding field 

• Next Header – Identifies the type of data contained in the Payload field 

• Authentication Data – Variable length field that contains the Integrity Check Value 

(ICV) for the packet 
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Security Parameters Index – 32 bits 

Sequence Number – 32 bits 

Payload Data – Variable Size 

Padding – 0 to 255 bytes 

Pad Length Next Header 
 

Authentication Data – Variable Size 

Figure 2.5:  Encapsulating Security Payload (ESP) Format 

 

2-7. Link-16. 

The purpose of Link-16 is to provide a mechanism for the exchange of real-time tactical data 

among units of U.S. forces, Joint Forces, and NATO forces.  Link-16 is an integral part of the Joint 

Battlespace Infosphere (JBI) and provides the network backbone for JBI communications.  Link-

16 provides Message Security (MSEC) through Type 1 Encryption, and provides Transmission 

Security (TSEC) through frequency hopping. 

Link-16 uses the Joint Tactical Information Distribution System (JTIDS) for the 

communications component of Link-16.  The JTIDS data terminal encompasses the Class-2 

terminal software, hardware, RF equipment, and the high-capacity, secure, anti-jam waveform that 

they generate [Nor01].  The JTIDS terminal is an advanced radio system that provides for the rapid 

exchange of tactical information among a large number of users.  The U.S. Air Force Class-2 

terminal implements the Class 1 Interim JTIDS Message Specification (IJMS) protocol as well as 

JTIDS.  JTIDS operates in the Lx band between 960 MHz and 1215 MHz and employs the Time 
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Division Multiple Access (TDMA) architecture.  By using different frequencies, a technique called 

“frequency hopping”, multiple nets can be “stacked” through the simultaneous use of time slots.  

Each time slot is 7.8125 milliseconds in duration.  JTIDS provides 51 different frequencies for 

frequency hopping.  The frequencies assigned to JTIDS for TDMA1 transmissions vary in range 

from 969 MHz to 1206 MHz in 3 MHz increments.  Each pulse is transmitted on a different 

frequency in a pseudorandom pattern that depends on the net number and the TSEC crypto-

variable.  The nominal frequency-hopping rate is greater than 33,000 hops per second [Nor01].  

2.7.1 Data Exchange Rates.  Link-16 can transmit either 3, 6, or 12 data words in a 7.8125 

msec (1/128 sec) time slot depending on whether the Standard, Packed-2, or Packed-4 data packing 

structure is used.  Each Link-16 data word is made up of 75 bits, of which 70 bits are data, 4 are 

used for parity and 1 is reserved as a spare bit.  The effective tactical data rates of Link-16 are 26.88 

kilo bits per second (kbps), 53.76 kbps, or 107.52 kbps, depending on the data packing structure 

used.  Each 7.1825 msec time slot of unencoded information holds 450 bits at Standard packing, 

900 bits at Packed-2 packing, and 1800 bits at Packed-4 packing.  Because error detection and 

correction (EDAC) requires 16 bits for every 15 bits of data, the same time slot with Reed-

Solomon encoding only holds 210, 420, and 840 bits of tactical information for the Standard, 

Packed-2, and Packed-4 encoding [Nor01].  

 

 

                                                 
1 Link-16 operates on the principle of Time Division Multiple Access (TDMA), wherein 128 time slots per second are allocated  

among all participating JTIDS Units (JU) for the origination and reception of data. 
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Therefore, the effective tactical data rates are calculated by multiplying the number of tactical 

information bits per slot by the number of slots per second, for example: 

• Standard packing:  210 data bits (3 × 70 bits/word) × 128 = 26.88 kbps 

• Standard packing with 5 parity bits:  225 (3 × 75 bits/word) × 128 = 28.80 kbps 

• Standard packing with EDAC:  465 (3 × 155 bits/word) × 128 = 59.52 kbps 

Therefore, when using EDAC, a little less than half of the JTIDS word is used for data.  If 

EDAC is not used, then the entire word can be used for data. 

If the additional bits for Reed-Solomon EDAC encoding are considered, then data rates1 

increase to 59.52 kbps, 119.04 kbps, and 238.08 kbps [Nor01].  Link-16 supports Link-4A and 

Link-112 functions as well as additional functions such as voice, navigation, and an expanded 

electronic warfare capability.  The table below shows a comparison to Link-11 and Link-4A 

common data rates. 

Table 2.1:  Link-16 Data Rate Comparison 

    Data Rates (kbps) 
 

Link 
 

Architecture 
 

Protocol 
Message 
Standard 

 
Tactical 

With 
Parity 

With 
EDAC 

Link-4A TDM Command/ 
Response 

V-Series 
R-Series 

3.06 -- -- 

 
Link-11 Netted Polling by 

Net Control 
M-Series Fast – 1.80 

Slow – 1.09 
-- 2.250 

1.365 
 

Link-16 TDMA Assigned 
Time Slots 

J-Series Standard – 26.88 
Packed-2 – 53.76 
Packed-4 – 107.52 

28.8 
57.6 
115.2 

59.52 
119.04 
238.08 

                                                 
1 These data rates should not be considered “effective” data rates because they include encoding overhead, however they are 

provided to give the reader an idea of actual “non-effective” bandwidth that Link-16 is capable of achieving. 
2 Link-16 provides communication improvements over its ancestors, the Link-4A (TADIL C) and Link-11 (TADIL A/B) tactical 

data link architectures. 
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2.7.2 Link-16 Data Security.  Link-16 encrypts both the message and the transmission.  

Message security (MSEC) uses the KGV-8 encryption device and cryptovariables to encrypt 

message traffic.  Transmission security (TSEC) is also accomplished through the use of 

cryptovariables, which control the JTIDS waveform.  An important feature of the waveform is its 

use of frequency hopping.  The hopping pattern is determined by both the net number and the 

TSEC cryptovariable.  The TSEC cryptovariable also determines the amount of jitter in the 

signal, and a predetermined, pseudorandom pattern of noise that is mixed with the signal prior to 

transmission. 

2-8. Common Object Request Broker Architecture (CORBA) 

CORBA, considered to be the most widely-used middleware standard, is an industry-

defined specification for distributed systems.  The CORBA specifications are a product of the 

Object Management Group (OMG) [TaV02].  The global architecture (reference Figure 2.6) of 

CORBA consists of four groups of architectural elements connected to what is call the Object 

Request Broker (ORB). 

The ORB forms the core of any CORBA distributed system and is responsible for enabling 

communication between objects and their clients [Tav02].  In the notional architecture discussed 

above, CORBA objects (Cups) may reside either in the JBI server or on-board the aircraft.  

Security threats to CORBA objects may appear in the form of attackers attempting unauthorized 

access to a CORBA object or unauthorized creation of a CORBA object.  Countermeasures 

include the use of ORBs, which fully support the CORBA Security (CORBASec) specification, 

at the CORBA middleware level of the notional architecture as shown in Figure 2.6. 
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Figure 2.6:  The Global Architecture of CORBA 

 
2-9. Current Research. 

 The following summarizes other research efforts either ongoing or completed related to this 

work. 

2.9.1 Tactical Digital Information Link (TADIL) J Range Extension (JRE).  Link-16 has 

proven to be an effective mode of communication for Tactical Data Links and will continue to be 

an integral part of military weapon’s communications systems.  The major draw back to Link-16 is  

it is limited to LOS communications.  However, there are several initiatives working to extend 

JTIDS beyond LOS.  The most common method of extending JTIDS range beyond LOS is through 

the employment of airborne relays.  However, this is not always possible due to lack of airborne 

assets.  Other means of extending beyond LOS include use of satellite communications, or use of a 

program called Joint Range Extension (JRE) [DGSP97]. 

The Joint Data Network (JDN) capacity is often strained because many participants require 

relays to reach Non LOS units.  A solution has been proposed using SATCOM as a means to 

supplement TADIL J traffic.  The primary means of distributing data in the JDN is with the JTIDS 

system.  JTIDS uses a TDMA architecture for the transmission and reception of voice and data on 

Object Request Broker
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(domain specific)
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(general purpose)
Application 
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Common 
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a finite number of time slots.  When relays are needed to reach NLOS units, the number of time 

slots is doubled for that particular operation. 

The TADIL J JRE program proposes a possible solution to the relay problem.  The program 

is being conducted in three phases.  The Phase 1 demonstration is a simple check to see if TADIL-J 

messages could be sent through a satellite and received within the required TMD latency.  Phase 1 

was successful and demonstrated that TADIL-J messages could be relayed through a satellite in 

near real time.  Phase 2 of JRE was similar to Phase 1 but the data was passed through a STU-III 

before it was reformatted into a J3.6 message before being sent via SATCOM.  Phase 2 also 

proved successful.  Phases 1 and 2 were conducted without using JTIDS terminals or networks.  

The Phase 3 demonstration connected remote JTIDS networks through the satellite range 

extension.  The Phase 3 demonstration was also successful and demonstrated there was a potential 

savings of time slots on the JDN utilizing the JRE.  JRE also provides more reliable connectivity in 

hostile environments because airborne assets might not be available. 

2.9.2 ATM Network-Based Integrated Battlespace Simulation With Multiple UAV-AWACS-

Fighter Platforms.  This research provides a realistic input to the amount of throughput that is 

required to support realistic C4I applications, real time battle management, SAR image processing 

and analysis, and real time air tasking order (ATO) monitoring through the demonstration of an 

integrated battlespace simulation on an advanced AWACS prototype network.  The integrated 

battlespace simulation includes the unmanned aerial vehicle (UAV), C4I platform, and fighter 

aircraft as core battlefield components.  The simulation uses a scenario not unlike the scenario 

introduced at the beginning of this chapter.  For its demonstration it uses both ATM LAN 

emulation and classical IP over ATM multicast configurations. 
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ATM Classical IP-based (CIP) Multicast Solution:  The ATM CIP protocol lacks a broadcast 

mechanism.  This is resolved by setting up point-to-multipoint permanent virtual circuit (PVC) 

connections from a broadcast server to all clients.  Since there is no such server in CIP, creation of 

a virtual broadcasting node (that corresponds to a broadcast service access point) at the switch is 

necessary. 

ATM LAN Emulation-based Multicast Solution:  ATM LAN emulation can support multiple 

independent emulated LANs (ELANs), and the membership in any of the ELANs is independent 

of the physical location of the end system.  The AWACS mission computer must be a member of 

all ELANs so that it can selectively broadcast information to any of the AWACS, fighter, or UAV 

group as different multicast groups. 

The maximum throughput in the TCP stream test was 108 Mbps for the ATM LAN 

emulation solution and 118 Mbps for the ATM CIP solution.  As long as the socket buffer sizes 

were kept above 64 Kilobytes, then both solutions demonstrated normal operation. 

2.9.3 IP Mobility Management for the Airborne Communications Node (ACN) Platform.  

In network-centric architecture where data is transferred via IP packets, it is important to consider 

issues that occur when moving from one ACN to another.  These include:  average signal strength; 

subscriber mobility as they move from one footprint of an ACN to another; and other types of 

mobile subscribers.  A potential problem occurs when, for example, an entire brigade moves 

relative to the ACN, into the footprint of another ACN.  Mobility management must ensure that 

routing to and from the edge routers continues to operate correctly.  One solution is Mobile IP, an 

IETF protocol designed to handle IP mobility [RFC 2002].  However, the range of movements of 
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the edge routers will be restricted to within the ACN network domain.  Therefore, only small-scale 

mobility management is required and an alternative to the Mobile IP solution can be considered 

such as a dynamic routing table update solution.  Link state routing performed better than the 

mobile IP solution in terms of overhead and does not have a single point of failure (as in Mobile IP 

with its home agent) [JaW00].  Although security overhead was not considered, other overhead 

issues were which may be beneficial when considering security overhead [JaW00]. 

2.9.4 Surveillance and Control Data Link Network (SCDLN) for Joint STARS.  The Joint 

Surveillance and Target Attack Radar System (Joint STARS) communications systems is used to 

connect an airborne radar platform and many mobile Ground Station Modules (GSM) [SaB94].  

The SCDLN uses a secure, highly jam-resistant, dynamically alterable two-way digital data link 

for the control and distribution of information.  The SCDLN has an additional capability to provide 

an autonomous message communication network over a wide aerial coverage in a hostile 

environment.  The major contributor to the anti-jam performance is the Fast Frequency Hopping 

(FFH) spread spectrum waveform.  Of particular interest in this article is the network architecture.  

Messages are transmitted in packets and the format will support the transfer of TADIL-J (JTIDS) 

packet messages. 

The network is configured so that an airborne platform retransmits incoming data from any 

GSM back to another or multiple GSMs within the local theatre of operations.  The network 

operates in half-duplex mode where time is divided into bursts, each burst lasting for 100 

milliseconds.  The downlink operation (from airborne platform to GSM) occupies approximately 

half this time, and two independent uplinks plus a guard time occupy the other half.  The 

retransmittal of the uplink message becomes an automatic acknowledgement to the sending GSM 
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that the uplink message was correctly received at the AWACS and also allows addressing 

information to any other GSM in the network (or all of them).  An unlimited number of GSMs can 

copy both downlink sensor data and relayed messages.  However, a maximum of 15 GSMs can be 

active at any time and participate in transmitting uplink messages.  Any GSM or AWACS can be 

the master in the network at a given time.  GSMs are allowed to enter or depart from the network.  

Once the AWACS commences downlink transmission, an initial polling sequence begins and the 

network is established by each GSM searching independently for the AWACS downlink signal and 

once found, begins downlink tracking. 

2-10. Summary. 

This chapter provides a general background and literature review for this research.  A 

notional JBI architecture was presented and how Link-16 fits into the overall JBI scenario was 

discussed.  Of particular interest are IA issues within the JBI and the best approach to establishing 

a robust IA security within the Link-16 arena through the use of IPv6 and IPSec.  Other approaches 

were considered through the use of CORBA security using objects to control access rights.  
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III.  Methodology 

 
3.1 Problem Definition. 

As communications technologies have developed, military systems have migrated from 

stand-alone systems to client-server and fully networked systems.  Therefore, more stringent 

security requirements have resulted in increased demands on security mechanisms.  The 

integration of embedded systems such as the F-15E within the proposed Joint Battlespace 

Infosphere (JBI) network topology exposes this aircraft to new information warfare threats.  

Exacerbating the problem, information assurance technologies designed for use in real-time 

embedded systems have not kept pace with emerging threats [Ray01].  Link-16 is a prime 

candidate to provide a network backbone for the proposed JBI communications.  The Joint 

Tactical Information Distribution System (JTIDS) terminal, which makes up the communications 

component of Link-16, provides Message Security (MSEC) through data encryption and 

Transmission Security (TSEC) through frequency hopping.  However, further security can be 

implemented through the network layer of the communications architecture. 

3.1.1 Goals and Hypothesis.  The research goal is to evaluate the performance of an 

Information Assurance scheme that incorporates IPv6 and IPSec over a Link-16 datalink 

network.  This goal is further defined by the following sub-goals: 

1. Evaluate the performance metrics of a baseline Link-16 system that incorporates 

IP packets across the Link-16 network. 

2. Determine the impact of incorporating IPSec into the baseline system. 

3. Determine the impact of various offered loads to the baseline system. 
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It is hypothesized that IPv6 and/or IPSec can be incorporated into the Link-16 network 

without degrading performance to a level that it is incapable of supporting real-time data and 

voice transmission. 

3.1.2 Approach.  To accomplish the above stated goals, a Link-16 model was used with 

the OPNET network simulation software to simulate IP traffic over a Link-16 network.  A 

distributed software system was used in which an external model communicates with the 

OPNET software to simulate incoming JBI traffic fed to the Link-16 network.  This system 

provided the necessary model to compare IP baseline traffic to IPSec to determine effects of 

increased load on the Link-16 network.  

3.2 System Boundaries.   

The System Under Test (SUT), Figure 3.1, includes the F-15E JBI Connectivity Software 

Architecture.  This includes the Real-Time OS, the Physical Layer (Link-16), an Adaptation 

Layer, the Network (IP) Layer, the Transport (TCP) Layer, Real-Time CORBA Middleware, and 

the JBI applications.  Also included but not pictured in Figure 3.1 is the JTIDS terminal, the 

communications component used to transmit data and voice transmissions across the Link-16 

network.  Not included in the SUT are the other components of the F-15E Avionics System 

Architecture which include Intelligence, Sensors, and Radar (ISR) collecting components.  

Within the SUT, the Component Under Test (CUT) includes the JTIDS terminal, the Physical 

Layer (Link-16), the Adaptation Layer, the Network Layer (IP), and the Transport Layer (TCP). 
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Figure 3.1:  F-15E JBI Connectivity Software Architecture [Ray01] 

 

3.3 System Services. 

The network layer decouples upper layers with independence from the data transmission 

and switching technologies used to connect systems.  In addition, the network layer provides 

network security including security services at the IP layer of the TCP/IP protocol stack.  The set 

of security services IPSec can provide includes data origin authentication, data integrity, 

confidentiality (encryption), and rejection of replayed packets (a form of partial sequence 

integrity), and limited traffic flow confidentiality.  All of these services are provided at the IP 
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layer and can be used by any higher layer protocol such as TCP and UDP [Kae99].  The primary 

services for this study and their possible outcomes include: 

1. Data Origin Authentication. 

a. Success – Packet received from valid origin (packet accepted) 

b. Failure – Unable to establish that packet came from valid origin (packet 

dropped) 

2. Data Integrity, Data Confidentiality. 

a. Success – Packet payload has not been tampered with (packet accepted) 

b. Failure – Unable to establish that packet payload can be trusted (packet 

dropped) 

3. Replay Protection. 

a. Success – Packets are prevented from being resent from an unauthorized 

source therefore preventing unauthorized access (packet dropped) 

b. Failure – Unable to detect that a packet came from an unauthorized source 

(packet accepted) 

3.4 Performance Metrics. 

The following metrics are used: 

1. Throughput – Throughput is defined as Transfer Size/Transfer Time, where Transfer 

Size is measured in bits and Transfer Time is measured in seconds.  Transfer Size is 

defined to be number of tactical data bits, thus does not include Reed-Solomon 

encoding.  The effective tactical data rates of Link-16 vary depending on the data 

packing structure used. 
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2. End-to-End (ETE) delay – ETE is measured in seconds and is defined to be the elapsed 

time from when a packet arrives at the source node’s routing layer to when the packet is 

received by the routing layer of the destination node. 

3. Data transfer – In Link-16, either 3, 6, or 12 Link-16 words can be transmitted in a 

7.8125 msec time slot depending on whether the Standard, Packed-2, or Packed-4 data 

packing structure is used.  For instance if the Packed-2 packing structure is used, then 

420 (six 70-bit words) data bits are transferred in 1/128 second to give an instantaneous 

rate of 52.5 kbps. 

3.5 Parameters. 

Within the system boundaries, the system and workload parameters that affect performance are 

defined below. 

3.5.1 System Parameters. 

1. JTIDS Transmission/Reception Equipment – This equipment is the 

communications component of Link-16.   It encompasses the Class 2 terminal 

software, hardware, RF equipment, and the high-capacity, secure anti-jam 

waveform that they generate [Nor01]. 

2. JBI Applications – These include the JBI server, browser, and collaboration 

server. 

3. JBI Data Resources – These include Air Tasking Orders, Imagery, etc. 

4. Network Layers – TCP, IP, physical layer. 

5. RT CORBA Middleware – Intermediary for passing objects between TCP layer 

and JBI applications.  
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3.5.2 Workload Parameters. 

1. Data rate – The tactical data rate range for Link-16 is 28.80 kbps to 115.20 

kbps. 

2. Voice and data workload – A trace of traffic measured on a real-time system 

will be used to compare against simulated results.  Data includes tactical data 

information such as navigation waypoints, target assignment, target tracking, 

release points, munitions inventory, and sensor data. 

3. IPv6 versus IPSec – IPv6 provides the channel for transferring IP packets.  

IPSec provides the additional security measures required for multi-level security 

within the F-15E notional architecture. 

4. Operating System (OS) – Proprietary real-time OS versus COTS. 

5. Packing structure – Either Standard, Packed-2, or Packed-4 data packing 

structure is used. 

3.6 Factors. 

The following factors and their corresponding levels were chosen as the most significant 

for this research. 

3.6.1 Data rate. 

1. Standard Tactical Rate (with parity) – 28.8 kbps 

2. Packed-2 Tactical Rate (with parity) – 57.6 kbps 

3. Packed-4 Tactical Rate (with parity) – 115.2 kbps 

3.6.2 Internet Protocol. 

1. IPv6 – This provides a baseline performance analysis of IP packets over 

Link-16. 
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2. IPSec – Additional overhead from IPSec is considered to determine if the 

Link-16 network can handle the increased workload.  The two protocols of concern 

are the Authentication Header protocol and the Encapsulated Security Payload 

protocol 

3.7 Evaluation Technique. 

 An OPNET Link-16 model developed by the Navy Space and Naval Warfare 

(SPAWAR) Systems Command office is used to evaluate this performance analysis.  Some 

modifications to the model were made by the Air Force Research Lab (AFRL) Sensors 

Directorate.  An external mission model was used with the OPNET Link-16 model to input 

mission data such as message type, message ID, message size, source, and destination.   

3.8 Workload. 

 Workload parameters are based on the Link-16 OPNET model as listed in Table 3.1: 

 

Table 3.1:  Workload Parameters 

Workload Parameter Setting 

Data Rate 57.6 kbps 

Offered Load 30, 60, 90 % 

Message Length 450 bits 

Type of Message J-series type 

Packing Structure Packed-2 (six words per time slot) 

Security Level AH, ESP, or both 

Network Participation Group (NPG) Varies according to mission function 
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3.9 Experimental Design. 

 This experimental design consists of specifying the number of experiments, the factor level 

combinations for each experiment, and the number of replications of each experiment.  Since this 

experiment included one factor with three levels and another factor with three levels, there were 

3 × 3 = 9 experiments.  Five replications were conducted for a total of 5 × 9 = 45 simulations.  

The 30%, 60%, and 90% offered load levels were chosen to show the effects these loads have on 

the Link-16 network when its lightly loaded, moderately loaded, and heavily loaded.  Although 

three different security levels were chosen (AH, ESP, and a combination of AH and ESP), it was 

not necessary to repeat a full set of simulations for the ESP level since it only adds two more 

bytes of overhead to the IP packet and the difference in the simulation results was negligible.  

Therefore, a few simulations were run to verify that the difference was negligible when adding 

26 bytes of overhead from the AH extension versus adding 28 bytes of overhead from the ESP 

extension. 

3.10 Summary. 

 This chapter described the methodology to be used for the performance analysis of 

implementing IP packets over the Link-16 network.  It discussed the thesis goal, approach to be 

used, system boundaries and services, performance metrics, parameters, factors, and workload. 
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IV.  IMPLEMENTATION AND ANALYSIS 

 
4.1 Overview 

This chapter provides research results and analysis.  The verification and validation of the 

OPNET implementation of the Link-16 model is described and a description of the baseline IPv6 

over Link-16 model is presented.  For comparison to the baseline, security features are added to 

IPv6 to further test the Link-16 network’s capacity to handle increased demand.  Finally, this 

chapter provides an overview of results and overall analysis. 

4.2  Link-16 Verification and Validation  

OPNET is a Commercial Off-The-Shelf (COTS) program that provides an environment for 

network simulations.  It is widely used throughout the DoD for network modeling and provides 

support for detailed radio modeling, which is a key requirement for JTIDS.  OPNET’s network 

traffic is generated stochastically, using probability density functions.  Therefore, generated data 

packets do not contain information, but are just tokens that represent data of a given size that 

transverse a given network.  This is sufficient for this study, since we are only interested in how 

overhead and data load affect overall performance, the particular information contained in packets 

is irrelevant.  The model need is based on a model provided by the AFRL Sensors Directorate and 

uses OPNET’s radio propagation model, referred to as the Radio Transceiver Pipeline, and 

simulates the protocol message packet and models a JTIDS terminal’s transmissions on a time slot 

basis.  Figure 4.1 shows the communications system consisting of an external mission model, and 

the JTIDS hosts and JTIDS terminals used in the Link-16 model.  The mission model is used to 

communicate with the Link-16 model and provides the offered load and mission data to the Link-

16 network. 
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Figure 4.1:  Mission Model – Link-16 Communication System 

This OPNET model was configured using the Link-16, Packed-2 packet format, which 

contains two 3-word blocks of 225 bits each for a total of 450 bits.  For example, one particular test 

sent 2160 bytes (17,280 bits) from a Narrow Area Search Munitions (NASM) terminal to the 

Airborne Command and Control Center (ABCCC) terminal.  The 17,280 bits were divided up and 

inserted into 39 (17,280/450 = 38.4) JTIDS packets. 

The JTIDS transmitter terminal adds 35 bits of overhead to the 6-word JTIDS packet for a 

total of 485 bits.  Average data rate is calculated based on 450 bits transmitted every 1/128th of a 

second, therefore 450 × 128 = 57,600 bps.  The terminal model supports transmission and 

reception of free-text format messages, the format used to transmit IP packet data through the 

Link-16 network.  The terminal model is a simplified representation of a JTIDS terminal that 

enqueues incoming TADIL-J messages from the host into available buffers, and sends them out in 

the correct timeslot.  The terminal model uses the OPNET Radio Transceiver Pipeline to 

calculate the effects of Radio Frequency (RF) propagation.  The pipeline stages used are modified 

versions of the default radio pipeline stages provided by OPNET.  The modifications allow for 

Mission 
Model 
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improved bit error rate calculation and add support for animation of the radio links.  The host-to-

terminal interface is represented as a duplex point-to-point link with zero delay.  Although it is not 

representative of the 1553 bus, the latency is factored into the Link-16 model. 

JTIDS scenarios require the terminal nodes and host computer pairs to be co-located in 

subnets for proper spatial movement.  This organization is imposed by OPNET because node 

models connected by physical links (as the terminal and host are by the dls_serial link) cannot be 

mobile.  

 Figure 4.2 shows the OPNET host node model used to generate J-series messages, which 

are sent to the JTIDS terminal shown in Figure 4.3.   

 

 
Figure 4.2: dls_JTIDS_host  Node Model 
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Figure 4.3:  dls_radio_JTIDS Node Model 

This J-series message packet format represents a single TADIL-J message consisting of six 

75-bit words.  The JTIDS terminal accepts these packets through the point-to-point serial interface 

connecting it to the host computer.  The JTIDS terminal encapsulates one or more TADIL-J 

messages that are sent in the time slot, along with the message headers.  The number of messages 

encapsulated is dependent on the packing type and the length of each TADIL-J message, which in 

the case of this model uses the Packed-2 format with a message length of 450 bits. 

Validation was not accomplished on this model because no real-time data could be obtained 

to validate the results against. 
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4.2.1  Verification Implementation.  The basic implementation of the JTIDS model used for 

verification included the parameter settings in Table 4.1.  Performance metrics include the End-to-

End (ETE) delay and throughput.   

 

Table 4.1:  Verification Workload Parameters 
Workload Parameter Setting 

Data Rate 57.6 kbps 

Offered Load 30 % (2,160 bytes or 17,280 bits) 

Message Length 450 bits 

Type of Message J-series type 

Packing Structure Packed-2 (six words per time slot) 

Security Level None 

Network Participation Group (NPG) NPG-29 

 

 

4.2.2  Sample size for determining mean.  To estimate the system’s mean performance with 

an accuracy of ± r % at a confidence level of 100 × (1-α )%, the number of observations n 

required to achieve this goal is can be determined from Eq. (4-1) [Jai91]: 

 Confidence Interval = 
n
szx ±  (4-1) 

Where z is the normal variate of the desired confidence level.  The desired accuracy of r % 

indicates that the confidence interval should be ( x (1-r/100), x (1+r/100)).   Using this and 

Eq. (4-1) and solving for n yields Eq. (4-2): 
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 With an accuracy of 5 % and based on preliminary tests, each set of simulations requires        

runs.  Refer to Appendix D for calculations used to determine the required number of simulations. 

4.2.3 Verification Results.  The Link-16 OPNET model was verified by presenting data at 

the host terminal and ensuring the data went across the host terminal to the sending JTIDS 

transmitter terminal, then to the receiving JTIDS terminal, and finally to the receiving host 

terminal.  During this process, the number of bytes received at the receiving JTIDS terminal was 

compared against the number of bytes sent at the sending JTIDS terminal to ensure that they were 

equal. 

The ETE delay was measured and compared against the ideal ETE delay.  For instance, 

when sending 17,280 bits through the network with the data rate set at 57,600 bits per second, 

the ETE delay should be 17,280 bits/57,600 bps = 0.300.  To verify the ETE delay, a 

MATLAB program (cfi, Appendix E) was used to create exponentially distributed IP messages 

at a frequency of 17,280 bps (2,160 bytes per second) for the baseline model representing a 30 % 

offered load. 

The MATLAB software program was used to create a script file that was input into an 

external “mission model”.  The mission model and the OPNET Link-16 model make up a 

distributed system in which the mission model uses the script file to input mission data to the 

OPNET Link-16 model.  It includes the following types of data:  type of message sent, time 

message was transmitted, message ID, source ID, destination ID, and message quality.  

Originally, messages were sent based on a deterministic distribution, or in other words the 

5≤n
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messages were sent every second with exactly one second between transmittals.  However, this 

method didn’t provide a realistic model of how traffic arrives at a network node and multiple 

runs generated the same results each time.  Therefore, an exponential distribution was created in 

order to model the bursty nature of network traffic arriving at a node. 

Through several simulations it was determined the OPNET model reached steady-state after 

3000 samples were run, as shown in Figure 4.4.  The average ETE delay was just over 0.250 

seconds.  Although the average ETE delay is typically expected to be equal to, or greater than, 

the ideal ETE delay, the reason it is less can be explained by either one of, or a combination of 

the following: 

 

 
Figure 4.4:  Average ETE Delay (2160 Byte Packet, 3000 Samples) 
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• The Radio Frequency (RF) data rate of the Link-16 model was set at 97.0 kbps, instead 

of 57.6 kbps to better approximate an effective throughput of 57.6 kbps, because the 

real terminal sends at a much higher rate to leave time within the time slot for 

propagation guard and jitter.  The total time required to transmit the header and data 

portion of the timeslot in the Packed-2 Double-Pulse structure is 5.772 ms.  Because 

the model is generic in the sense that it can support, Standard Double Pulse, Packed-2 

Single Pulse, Packed-2 Double Pulse, or Packed-4 Double Pulse message packing, it 

uses an average time to model jitter and propagation.  Therefore, depending on which 

type of data pulse is used, there will be some built in error. 

• Although the exponential distribution was set up to send an IP packet to the host 

terminal every second, the actual calculated time between packets sent varies from 0.97 

seconds to 1.03 seconds, causing the ETE delay and throughput to be offset by various 

amounts.  

The OPNET model was also checked to ensure it was using the proper packing 

configuration (Packed-2) and if it was adding the additional 35 bits of overhead to each 450-bit 

word.   

Messages were traced and verified that a total of 485 bits were being transmitted through the 

JTIDS terminals.  Through several simulations and debugging methods, the above mentioned 

verification tests confirmed that the OPNET model was operating correctly. 

4.3 JTIDS Baseline. 

This research is studying the effects of IPv6 packets over the JTIDS network as well as the 

effect IPSec, with its additional security overhead bits, has on the latency and throughput of the 
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Link-16 network.  The IPSec areas of interest are Authentication Header (AH) and Encapsulating 

Security Payload (ESP) protocols and are explained in the next section. 

4.3.1 Baseline Implementation.  The implementation of the Link-16 model used as a 

baseline includes the parameter settings outlined in Table 4.2.  An external model was used to 

communicate with the OPNET model in order to simulate IP traffic downloaded to a JTIDS 

host terminal.   

 

Table 4.2:  Implementation Workload Parameters 
Workload Parameter Setting 

Offered Load 30, 60, or 90 % 

IP Message Length 2160, 4320, 6480 bytes 
plus 28 bytes for AH 
and 54 bytes for AH and ESP 

JTIDS Message Length 450 bits 

Type of Message J-series type 

Packing Structure Packed-2 (six words per time slot) 

Security Level AH, ESP, or Both 

Network Participation Group (NPG) NPG-29 

 

 

 4.3.2 Baseline Results (ETE Delay).  The ETE is measured in seconds and is defined to 

be the elapsed time from when a packet arrives at the source node’s routing layer to when the 

packet is received by the routing layer of the destination node.  Figure 4.5 shows the ETE mean 

delay for offered loads of 30, 60, and 90 %.  For the 30 % load, 2,160 bytes (17,280 bits) were 
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generated every second for an average ETE delay of 0.256 seconds.  The ideal ETE mean delay 

should be 17,280 bits/57,600 bps = 0.300 seconds.   

  The 60 % offered load (4320 bytes) resulted in an average ETE of 0.652 seconds.  The 90 

% workload (6,480 bytes) resulted in an average ETE of 1.354 seconds.  Additional simulations 

were run using 8,000 byte IP packets at which point the ETE average was 2.506.  As expected, 

an increase in the number of bytes per second beyond the 90 % offered load caused the buffer to 

backup, and required several hours for the OPNET simulations to reach completion. 
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Figure 4.5:  Baseline End-To-End Delay 

 4.3.3  Baseline Results (Effective Throughput).  Figure 4.6 shows the effective throughput for 

nominally offered loads of 30, 60, and 90 %.  Effective throughput was calculated by using the 

total number of bits offered at the host terminal divided by the total simulation time.  The total 
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number of bits only includes the data bits, and does not include any overhead bits.  The actual 

offered load varied slightly from the nominally offered load.  For instance, the 30 % offered load 

should present 17,280 bits per second (bps) (57,600 × 0.30) to the host terminal.  However, as 

mentioned above, the exponential distribution is used to calculate the time each IP packet is 

presented to the host terminal, but the actual calculated value for how often packets are presented 

may differ from the nominal valued by as much as several milliseconds.  As was the case in the 

30 % offered load, the actual distribution time was 17,280 bits per 1.02 seconds.  Therefore the 

actual offered load was 16,941 (17,280/1.02).  The measured effective throughput of 16,949 bps 

is slightly different due to rounding errors in the Link-16 model.  
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Figure 4.6:  Effective Throughput – Baseline 
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At the 60 % nominally offered load level the Link-16 network is only receiving 34,491 bps 

and is not fully utilized and there is less chance of messages backing up in the buffer.  However, 

at the 90 % workload level, the host terminal is receiving 51,798 bps, which is near its maximum 

capacity and messages back up in the buffer more frequently, thereby negatively impacting the 

effective throughput and thus explains the super-linear growth. 

4.4 JTIDS Security Feature Additions (IPSec) 
 

Security and privacy in IPSec is integrated into IPv6 and provided through the AH and ESP 

protocols. 

4.4.1 Authentication Header (AH) Protocol – End-To-End Delay.  The addition of the 

AH to the IPv6 baseline involves using the keyed MD-5 hash function, or any one way hashing 

algorithm to compute a 128-bit digest of the message to be transmitted [CDK01].  In this effort, 

the MD-5 has function is considered for calculating additional overhead bits.  The 128 bits 

returned from the hash function is appended to the authentication data contained in the AH.  As 

mentioned in Chapter Two, the AH adds on 12 bytes from the first five fields of the AH and 

another 16 bytes (128 bits) of authentication data for a total of 28 additional bytes added to the IP 

packet.  Therefore, even though this process requires extensive computer preprocessing, it only 

adds 28 bytes of overhead to the baseline IP packet, thus effecting network latency and ETE 

delay very minimally as shown in Figure 4.7 [Kae99]. 

4.4.2 Authentication Header (AH) Protocol -- Effective Throughput.  Figure 4.8 shows 

the effective throughput for offered loads of 30, 60, and 90 %.  Similar to the ETE delay, the 

effective throughput is minimally impacted due to the addition of the AH protocol. 
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Figure 4.7:  Baseline and Authentication Header -- End-To-End Delay 
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Figure 4.8:  Baseline and Authentication Header -- Effective Throughput 
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4.4.3 Encapsulating Security Payload (ESP) Protocol – Effective Throughput.  The 

addition of the ESP header to the IPv6 baseline uses an encryption algorithm to secure the 

payload.  A common encryption algorithm used is triple DES.  Triple DES uses a 112-bit key to 

encrypt the payload data, therefore adding 14 bytes onto the payload data.  As described in 

Chapter Two, the ESP protocol adds a minimum of 12 bytes and up to an additional 255 bytes (if 

required by the encryption algorithm).  A total of 26 bytes will be used as additional overhead 

data for the ESP protocol.   

 Since the additional 28 bytes of overhead from the AH had such a small effect on the 

overall ETE delay, it is reasonable that simulations ran using 26 bytes of overhead would be 

statistically equivalent and therefore, in the economy of time, a full set of simulations was not 

conducted for the ESP extension, but instead a few simulations were run to verify that results 

were not significantly different from the simulations run for the AH extension.  The overall 

effect on throughput was also minimal. 

4.4.4 Baseline, Authentication Header, and Encapsulating Security Payload -- ETE 

Delay.  ESP and AH headers can be combined in a variety of modes.  For these simulations, an 

average for the combination of the ESP and AH headers was used which added an additional 54 

(28 + 26) bytes of overhead.  As can be seen in Figure 4.9, the increase in overhead has a 

minimal effect on the average ETE delay.  The 30 % offered load increases from 0.256 for the 

baseline, to 0.470 for the 60 % offered load, and 1.060 for the 90 % offered load.  
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Figure 4.9:  Baseline, Authentication, and Encapsulating Security Payload 

End-to-End Delay 
 

4.4.5 Baseline, Authentication Header, and Encapsulating Security PayloadProtocols – 

Effective Throughput.  Figure 4.10 shows the effective throughput for offered loads of 30, 60, and 

90 %.  The throughput for the 30 % workload increases slightly from 16,949 bps for the baseline, 

to 17,372 bps for AH, and again increases slightly to 17,582 bps for the combination of AH and 

ESP.  The slight increase from the AH configuration to the AH and ESP combined configuration 

shows that the difference is statistically insignificant as can be seen in Table 4.3 because the F-

Computed values are less then the F-Table values.  The 60 and 90 % workloads follow a similar 

trend. 
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Figure 4.10:  Baseline, Authentication, and Encapsulating Security Payload 

Effective Throughput 
 

4.5 Result Analysis 

 The next sections present an analysis comparing the three overhead variations (baseline, AH, 

AH and ESP combined) to the offered load variations (30, 60, 90 % offered load).  All the 

ANOVA tables and derivation formulas are also displayed together in Appendices A through C. 

4.5.1 End-To-End (ETE)Delay Analysis.  As seen in Figure 4-9 above, the ETE delay 

increases as packet size (offered load) increases.  The variation shown in Table 4.3 shows that 

99.94 % of the variation was due to the change in workload.  Only 0.02 % of the variation was due 

to increased overhead.  The variation due to overhead-workload interaction was 0.01 % and 

variation due to error was 0.02 %.  Because the F-Computed value for offered load is significantly 

larger than the F-Table value, this confirms that offered load has a significant impact in Link-16 

network performance.  The F-Computed value for the overhead variation is slightly larger than the 
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F-Table value; therefore, it has a minimal effect on the network performance.  Because the 

F-Computed value for interaction is less than the F-Table value, the overhead-offered load 

interaction does not have an effect on the network performance. 

 

Table 4.3:  End-to-End (ETE) Delay Allocation of Variation (ANOVA) 

 

4.5.2 Effective Throughput Analysis.  The effective throughput, as seen in Figure 4.10 

above, is 98 % (16949 bps/17280 bps) of the maximum effective throughput at the 30 % offered 

load level.  At the 60 % offered load level the throughput percentage is 99.8 % (34,491 bps/34,560 

bps), and at the 90 % offered load level the throughput percentage is 99.9 % (51,798 bps/51,840 

bps).  As previously mentioned, the effective throughput will at times be less than, or even greater 

than, the ideal throughput due to the error in the exponential distribution of the IP packets not 

being delivered, on average, exactly one second apart. 

The variation shown in Table 4-4 shows that 99.83 % of the variation is due to change in the 

offered load.  The change in overhead effects 0.03 % of variation, and 0.13 % of the variation is 

due to error.  The F-Computed valued of 13544.72 for the offered load is well above the F-Table 

value, verifying it has a significant impact on Link-16 network performance.  The overhead and 

interaction variations have no effect on Link-16 performance as verified by smaller F-Computed 

values as compared to the F-Table values. 

Table A.6:  End-To-End Delay Allocation of Variation 
 Variation Variation % DOF Mean Square F-Computed F-Table
SSY 35.6400   45       
SSO 26.0969   1       
SSA (Overhead Var): 0.0019 0.0203 2 0.0010 15.592 6.940 
SSB (Offered Load Var): 9.5376 99.9427 2 4.7688 76652.265 6.940 
SSAB (Interaction): 0.0013 0.0135 4 0.0003 5.181 6.940 
SSE (Error Var): 0.0022 0.0235 36 0.0001     
SST 9.5431   44 0.2169     
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Table 4.4:  Effective Throughput Allocation of Variation (ANOVA) 

Table B.6:  Effective Throughput Allocation of Variation 
  Variation Variation % DOF Mean Square F-Computed F-Table 

SSY 63345625271   45       
SSO 54302809601   1       
SSA (Overhead Var): 3032934 0.03 2 1516467 4.55 6.94 
SSB (Offered Load Var): 9027475902 99.83 2 4513737951 13544.72 6.94 
SSAB (Interaction): 309939 0.00 4 77485 0.23 6.94 
SSE (Error Var): 11996896 0.13 36 333247     
SST 9042815670   44 205518538     

 

4.5.3 Raw Throughput Analysis.  Figure 4.11 shows the raw throughput for the all three 

offered loads and all three overhead configurations.  The raw throughput is actually greater than 

the number of data bits offered at the host terminal because of the overhead bits added to the data 

load before the JTIDS terminal transmits the JTIDS word. 
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Figure 4.11:  Baseline, Authentication Header, and Encapsulating 

Security Payload Raw Throughput  
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4.6  Confidence Interval(CI) Analysis 

 CI analysis can be used to determine if a measured value is significantly different from zero.  

The analysis is performed by checking the CI interval to see if it includes the value zero.  If the CI 

includes zero, then the measured values are not significantly different than zero.   Appendix A 

(Tables A.7 and A.8) and Appendix B (Tables B.7 and B.8) show the CI for the ETE delay and 

throughput offered load and overhead effects.  The CI analysis shows that the results from the 

varied offered loads are significant, but the results from the varied security levels are not 

significant.  

4.7 Summary 

 This chapter described the verification of the OPNET Link-16 model and the resultant data 

from that model.  Next, the implementation and results of the IP baseline model used for this 

research were explained.  Then a performance summary of the overhead and workload variations 

was described.  Finally an analysis of the results and data variations was explained.  
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V.  Conclusions and Future Work 

5.1 Overview 

The JBI concept is within reach of becoming reality now that information technologies, in 

particular Internet technologies, are reaching a quality-of-service level that provides sufficient 

bandwidth for fast-paced war-fighting requirements.  As various communication sub-systems are 

pieced together to form a network-centric JBI, Information Assurance becomes a chief concern.  

IPSec provides another security layer in the overall JBI security scheme.  The research goal was 

to determine the feasibility of passing IP messages and IPSec messages over a Link-16 network.  

Sub-goals included performance analysis by comparing the effect that additional overhead from 

the IPSec security protocols has on a Link-16 network.  In addition, various workloads were 

placed on the network to see how overall ETE delay and throughput are affected. 

5.2 Conclusions 

  Since the IPSec security protocols add minimal overhead to the IP packet, and even though 

the Link-16 network is relatively slow (57.6 kbps) compared to most Internet pipelines, it has 

minimal effect on Link-16 ETE delay and throughput.  Similar to varying the security levels, 

varying the offered load has a minimal effect on effective throughput.  At the 60 % offered load 

level, effective throughput is 99.8 % of the maximum capacity.  At the 90 % offered load level, 

effective throughput is 99.9 % of maximum capacity.  Here we see, that an offered load through 

the 90 % level does not negatively impact the performance of the Link-16 network.  However, 

the Link-16 data rates are still not adequate to for transferring large data files that typically 

traverse the Internet.  Some research has been done, suggesting the Link-16 network can operate 

up to 1.0 Mbps.  An effective throughput near the 1.0 Mbps level would be adequate to process 

large imagery files which typically range in size from 2 to 5 megabytes.  At an average effective 
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throughput rate of 1.0 Mbps, a typical imagery file of 3 to 5 megabytes can take 3 to 5 seconds 

to download. 

5.3 Contributions 

  This research demonstrates that although the IPSec security protocols contribute minimal to 

IP packet overhead, the main problem is that the Link-16 network is a legacy system that is far 

too slow to transfer large size data files.  The AH and ESP security protocols can be added to the 

IPv6 packets with minimal effect on ETE delay and effective throughput.  However, as offered 

load increases beyond 6.5 kbps, throughput begins to degrade rapidly.  Therefore, the Link-16 

network can transmit IP packets provided the average bytes per second rate doesn’t exceed 6.5 

kbps.  The addition of IPSec protocols has minimal impact on the Link-16 network and does not 

degrade its performance. 

5.4 Future Work 

  Since the USAF Tactical Datalink Roadmap has determined that Link-16 will be around for 

long term use, future work and research will always be useful to discover methods of improving 

the Link-16 data rate, such as software modifications or compression techniques.  Further 

research can be conducted in this area by adjusting the Link-16 data rates to current maximum 

capacity of 238 kbps to determine effective throughput at that rate.  Hardware modifications can 

also be made which effect the carrier modulation to increase the number of words in the packing 

structure. 

  It should be noted that the OPNET Link-16 model used in this research was one of the 

early versions of several planned iterations, and some features such as relay and net stacking, are 
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not part of the current model set.  Possible future research may include the use of multiple nets 

to simultaneously transmit data to increase throughput.  It would be beneficial to validate the 

OPNET Link-16 model used in this research work.  However, real-time data is needed to 

validate results obtains from the Link-16 model. 
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Appendix A.  End-to-End Delay Allocation of Variation (ANOVA) Worksheet 

  Table A.1:  End-To-End Delay Data 
Offered Load (%) Baseline AH AH & ESP 

30 17280 bits 17504 bits 17712 bits 
  0.254309 0.257448 0.261042 
  0.252114 0.256790 0.258394 
  0.258622 0.253870 0.254543 
  0.248114 0.258590 0.263156 
  0.264652 0.257132 0.256534 
        

60 34560 bits 34784 bits 34992 bits 
  0.648327 0.658174 0.662515 
  0.647106 0.667412 0.657479 
  0.663169 0.657781 0.672983 
  0.659590 0.653576 0.657880 
  0.640772 0.650811 0.663237 
        

90 51840 bits 52064 bits 52272 bits 
  1.339830 1.352140 1.392471 
  1.366074 1.365532 1.383270 
  1.347827 1.377320 1.388572 
  1.371586 1.373314 1.390297 
  1.342722 1.378324 1.383547 

 

      Table A.2:  End-To-End Delay Mean 
Offered Load (%) Baseline AH AH & ESP 

30 0.256 0.257 0.259 
60 0.652 0.658 0.663 
90 1.354 1.369 1.388 

    
    

 Table A.3:  End-To-End Delay Standard Deviations 
Offered Load (%) Baseline AH AH & ESP 

30 0.006343 0.001754 0.003442 
60 0.009296 0.006303 0.006255 
90 0.014321 0.010846 0.004096 
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Table A.4:  End-To-End Delay Computation of Effects 
Offered Load (%) Baseline AH AH & ESP Row Sum Row Mean Row Effect 

30 0.255562 0.256766 0.258734 0.771062 0.25702068 -0.504511482 
60 0.651793 0.657551 0.662819 1.972162 0.65738741 -0.104144756 
90 1.353608 1.369326 1.387631 4.110565 1.3701884 0.608656238 

Column Sum 2.260963 2.283643 2.309184       
Column Mean 0.753654 0.761214 0.769728   0.761532   
Column Effect -0.007878 -0.000318 0.008196       

 

       Table A.5:  End-To-End Delay Interaction Effects 
Offered Load (%) Baseline AH AH & ESP   

30 0.006419 0.000063 -0.006483 0.000000 
60 0.002283 0.000481 -0.002764 0.000000 
90 -0.008703 -0.000545 0.009247 0.000000 

  0.000000 0.000000 0.000000   
 

Table A.6:  End-To-End Delay Allocation of Variation 
  Variation Variation % DOF Mean Square F-Computed F-Table 

SSY 35.6400   45       
SSO 26.0969   1       
SSA (Overhead Var): 0.0019 0.0203 2 0.0010 15.592 6.940 
SSB (Offered Load Var): 9.5376 99.9427 2 4.7688 76652.265 6.940 
SSAB (Interaction): 0.0013 0.0135 4 0.0003 5.181 6.940 
SSE (Error Var): 0.0022 0.0235 36 0.0001     
SST 9.5431   44 0.2169     

 

Table A.7:  Confidence Interval For Overhead Effects 
Parameter Mean Effect Standard Dev. C.I. (low end) C.I. (high end) 

  0.7615 0.0012 0.7592 0.7638 
Overhead         
Baseline -0.0079 0.0017 -0.0111 -0.0046 

AH -0.0003 0.0017 -0.0036 0.0029 
AH & ESP 0.0082 0.0017 0.0049 0.0115 

 
Table A.8:  Confidence Interval For Offered Load Effects 

Parameter Mean Effect Standard Dev. C.I. (low end) C.I. (high end) 
  0.7615 0.0012 0.7596 0.7638 

Offered Load         
30% -0.5045 0.0017 -0.5078 -0.5013 
60% -0.1041 0.0017 -0.1074 -0.1009 
90% 0.6087 0.0017 0.6054 0.6119 
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Appendix B. Effective Throughput Allocation of Variation (ANOVA) Worksheet
 

Table B.1:  Effective Throughput Data 
Offered Load (%) Baseline AH AH & ESP 

30 17280 bits 17504 bits 17712 bits 
  17073 17794 17132 
  16829 16970 17968 
  16540 16915 17395 
  17215 18163 17927 
  17088 17018 17487 
        

60 34560 bits 34784 bits 34992 bits 
  34277 34495 35395 
  35544 35307 34635 
  34101 35126 34874 
  33664 35271 36167 
  34868 34333 35738 
        

90 51840 bits 52064 bits 52272 bits 
  51573 52841 52334 
  52803 51376 51756 
  51785 52382 52027 
  51947 51284 53258 
  50883 52023 51628 

 

Table B.2:  Effective Throughput Mean 
Offered Load (%) Baseline AH AH & ESP 

30 16949 17372 17582 
60 34491 34906 35362 
90 51798 51981 52201 

 

Table B.3:  Effective Throughput Standard Deviations 
Offered Load (%) Baseline AH AH & ESP 

30 267.98 569.93 358.57 
60 730.22 458.20 623.93 
90 692.94 662.19 650.30 
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Table B.4:  Effective Throughput Computation of Effects 
Offered Load (%) Baseline AH AH & ESP Row Sum Row Mean Row Effect 

30 16949.00 17372.05 17581.89 51902.94 17300.98 -17437.03 
60 34490.76 34906.35 35361.80 104758.91 34919.64 181.63 
90 51798.42 51981.20 52200.60 155980.22 51993.41 17255.40 

Column Sum 103238.17 104259.60 105144.29       
Column Mean 34412.72 34753.20 35048.10   34738.01   
Column Effect -325.28 15.19 310.09       

 

Table B.5:  Effective Throughput Interaction Effects 
Offered Load (%) Baseline AH AH & ESP   

30 -26.70 55.88 -29.18 0.00 
60 -103.60 -28.48 132.07 0.00 
90 130.29 -27.40 -102.90 0.00 

  0.00 0.00 0.00   
 

Table B.6:  Effective Throughput Allocation of Variation 
  Variation Variation % DOF Mean Square F-Computed F-Table 

SSY 63345625271   45       
SSO 54302809601   1       
SSA (Overhead Var): 3032934 0.03 2 1516467 4.55 6.94 
SSB (Offered Load Var): 9027475902 99.83 2 4513737951 13544.72 6.94 
SSAB (Interaction): 309939 0.00 4 77485 0.23 6.94 
SSE (Error Var): 11996896 0.13 36 333247     
SST 9042815670   44 205518538     

 

Table B.7:  Confidence Interval For Overhead Effects 
Parameter Mean Effect Standard Dev. C.I. (low end) C.I. (high end) 

  34738.01 86.06 34569.34 34906.67
Overhead         
Baseline -325.28 121.70 -563.82 -86.75

AH 15.19 121.70 -223.34 253.73
AH & ESP 310.09 121.70 71.56 548.62

 

Table B.8:  Confidence Interval For Offered Load Effects 
Parameter Mean Effect Standard Dev. C.I. (low end) C.I. (high end) 

  34738.01 86.06 34596.45 34906.67
Offered Load         

30% -17437.03 121.70 -17675.56 -17198.50
60% 181.63 121.70 -56.90 420.16
90% 17255.40 121.70 17016.87 17493.93
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Appendix C.  Raw Throughput Charts 
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Figure C.1:  Raw Throughput (Baseline) 
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Figure C.2:  Raw Throughput (Baseline and AH) 
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Figure C.3:  Raw Throughput (Baseline, AH, and ESP)



 

D-1 

Appendix D.  Sample Size for Determining Mean 

  Table D.1:  Baseline   
30% Baseline      
95% C.I., z =  1.96   
Std. Dev:  0.006343   
Sample Mean:  0.255562 1.243184
Accuracy, r (%) =  5 1.277811
n =  0.9465 0.972901
       
60% Baseline      
95% C.I., z =  1.96   
Std. Dev:  0.022164   
Sample Mean:  0.469752 4.344159
Accuracy, r (%) =  5 2.348761
n =  3.4208 1.849553
       
90% Baseline      
95% C.I., z =  1.96   
Std. Dev:  0.039549   
Sample Mean:  1.060222 7.751524
Accuracy, r (%) =  5 5.30111 
n =  2.1382 1.462245

 

Table D.2:  Authentication Header (AH) 
30% AH      
95% C.I., z =  1.96   
Std. Dev:  0.006455   
Sample Mean:  0.273497 1.265097
Accuracy, r (%) =  5 1.367486
n =  0.8559 0.925126
       
60% AH      
95% C.I., z =  1.96   
Std. Dev:  0.009691   
Sample Mean:  0.469752 1.899386
Accuracy, r (%) =  5 2.348761
n =  0.6540 0.808676
       
90% AH      
95% C.I., z =  1.96   
Std. Dev:  0.012579   
Sample Mean:  1.060222 2.465449
Accuracy, r (%) =  5 5.30111 
n =  0.2163 0.465082
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Table D.3:  AH & ESP 
30% AH & ESP      
95% C.I., z =  1.96   
Std. Dev:  0.013140   
Sample Mean:  0.255562 2.575354
Accuracy, r (%) =  5 1.277811
n =  4.0620 2.015442
       
60% AH & ESP      
95% C.I., z =  1.96   
Std. Dev:  0.013571   
Sample Mean:  0.514804 2.659843
Accuracy, r (%) =  5 2.574022
n =  1.0678 1.033341
       
90% AH & ESP      
95% C.I., z =  1.96   
Std. Dev:  0.007291   
Sample Mean:  1.091631 1.429121
Accuracy, r (%) =  5 5.458157
n =  0.0686 0.261832
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Appendix E – Exponential Distribution Matlab File 
 
range = 1200; 
 
rand('seed', 1); 
L0 = zeros(1,range); 
L0(1) = randexpo(1,1); 
for i = 2:range 
   L0(i) = L0(i-1)+randexpo(1,1); 
end 
 
L1 = zeros(1,range); 
L1(1) = randexpo(1,1); 
for i = 2:range 
   L1(i) = L1(i-1)+randexpo(1,1); 
end 
 
L2 = zeros(1,range); 
L2(1) = randexpo(1,1); 
for i = 2:range 
   L2(i) = L2(i-1)+randexpo(1,1); 
end 
 
L3 = zeros(1,range); 
L3(1) = randexpo(1,1); 
for i = 2:range 
   L3(i) = L3(i-1)+randexpo(1,1); 
end 
 
L4 = zeros(1,range); 
L4(1) = randexpo(1,1); 
for i = 2:range 
   L4(i) = L4(i-1)+randexpo(1,1); 
end 
 
L5 = zeros(1,range); 
L5(1) = randexpo(1,1); 
for i = 2:range 
   L5(i) = L5(i-1)+randexpo(1,1); 
end 
 
L6 = zeros(1,range); 
L6(1) = randexpo(1,1); 
for i = 2:range 
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L6(i) = L6(i-1)+randexpo(1,1); 
end 
 
LO=L0' 
L1=L1' 
L2=L2' 
L3=L3' 
L4=L4' 
L5=L5' 
L6=L6' 
%rand('seed', 109); 
      
  save c0.dat L0 -ASCII 
  save c1.dat L1 -ASCII 
  save c2.dat L2 -ASCII 
  save c3.dat L3 -ASCII 
  save c4.dat L4 -ASCII 
  save c5.dat L5 -ASCII 
  save c6.dat L6 -ASCII 
   
%rand('seed', 1109);
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